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Abstract

Although many interesting and noteworthy works have
emerged in pedestrian re-identification (ReID) tasks, most of
them primarily impose loss constraints directly on RGB im-
ages and leverage large-scale pre-trained models for training.
However, there has been very little research focusing on the
evolution of models and recognition performance from the
perspective of frequency dimensions. We believe that con-
sidering how to constrain high- and low-frequency infor-
mation during the model evolution process is a worthwhile
and intriguing problem. To validate our idea, in this paper,
we utilize the Discrete Haar Wavelet Transform (DHWT)
to decompose RGB image inputs into high-frequency and
low-frequency components. We then observe the changes
in these two types of information during the model evolu-
tion process. First, we propose a DHWT-based Frequency-
Driven Augmentation (FDA) structure, which can be eas-
ily integrated into the model training pipeline. Second, to
support frequency-adaptive enhancement, we introduce a
Low-High Frequency Similarity Loss (LHFS loss) that con-
strains high- and low-frequency information, enabling the
model to effectively distinguish between these two compo-
nents.Experiments conducted on ReID benchmark datasets
validate the effectiveness of our approach.

Introduction
Pedestrian re-identification (ReID) aims to find the most
matching image from a dataset given a query image (Ye et al.
2021; Zhang et al. 2020a,b; Zhuang et al. 2020). Among
these, some works have adopted ResNet as their backbone
(Wang et al. 2020, 2018; Zhu et al. 2020), while TransReID
has effectively improved the performance of transformers on
ReID tasks (He et al. 2021).

Subsequent studies have not only utilized transformers
but also fully explored their properties, leading to many fas-
cinating developments (Tan et al. 2022b; Zhu et al. 2022a,b).
However, it is worth noting that these efforts primarily focus
on enhancing recognition performance by considering the
model’s evolution from the perspective of spatial informa-
tion.

In this paper, we propose a novel approach by investigat-
ing the network evolution process from the frequency do-
main. As shown in Figure 1, we compared the testing results
of TransReID and ResNet101 on the MSMT17 and Mar-
ket1501 datasets. Additionally, we used three different data
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Figure 1: Comparison of ResNet101 and TransReID on Dif-
ferent Datasets. In this analysis, A represents ResNet101,
and B represents TransReID. The notations (o), (l), and (h)
correspond to the original images, the low-frequency com-
ponents obtained by applying DHWT to the original images,
and the high-frequency components, respectively. Accuracy-
1 refers to the probability that the top-ranked result in the
recognition process is the correct match (Rank-1 accuracy).

types: the original images, the low-frequency components
obtained by applying DHWT to the original images, and the
high-frequency components.

Models perform better with original images than with
low- and high-frequency components. As shown in Fig-
ure 1, for the same model, the recognition performance
on original images is consistently better than on low- and
high-frequency components. Specifically, for ResNet101,
the Rank-1 Accuracy achieved using original images is
10.3% higher than that of the low-frequency components
and 60.2% higher than that of the high-frequency compo-
nents. The primary reason for this, we believe, is that low-
frequency components only capture coarse visual informa-
tion, while the missing fine-grained details are closely asso-
ciated with high-frequency information.

TransReID performs worse than ResNet101 in utilizing
high-frequency information. As also shown in Figure 1, for
original images and low-frequency components, TransReID
consistently outperforms ResNet101 in recognition perfor-
mance. However, the opposite is true for high-frequency
components. This observation, coupled with the findings
in the first point, motivated our work to explore how the
relationship between high- and low-frequency information
evolves during the training of models with Transformer ar-
chitectures. Our research reveals that the Transformer struc-



ture significantly reduces the distinction between high- and
low-frequency information. In other words, Transformers
lose the ability to differentiate between high- and low-
frequency information during model evolution. This will be
elaborated further in Section Frequency Similarity.

First, inspired by the observed changes in this relation-
ship, we propose a DHWT-based Frequency Domain Aug-
mentation (FDA) structure. This structure can be seamlessly
integrated into the training pipeline and removed during the
inference phase, ensuring that it does not affect the model’s
inference speed. Thus, FDA can be considered a plug-and-
play auxiliary training component.

Second, to enable FDA to effectively constrain the rela-
tionship between high- and low-frequency information, we
introduce a Low-High Frequency Similarity Loss (LHFS
loss).

The contributions of our FDA can be summarized as fol-
lows:

• Our work uncovers the differences in how various mod-
els process original images, low-frequency information,
and high-frequency information. Furthermore, it demon-
strates that the relationship between high- and low-
frequency information undergoes significant changes
during network evolution.

• Based on the observed evolution patterns of high- and
low-frequency information relationships, we propose a
plug-and-play FDA structure and introduce the LHFS
loss to constrain the relationship between these two types
of information.

• Experiments conducted on the MSMT17 and Market-
1501 datasets reveal that our FDA method can improve
the model’s recognition capability under the same condi-
tions and achieve competitive recognition results.

Related work
CNN-based Person Re-identification
Recent advancements in person ReID have leveraged Con-
volutional Neural Networks (CNNs) to extract robust and
discriminative features for identifying individuals across dif-
ferent camera views. Many CNN-based methods aim to en-
hance feature representations by combining global and local
information.

For instance, Multiple Granularity Network (MGN)
(Wang et al. 2018) utilizes a multi-branch architecture to
capture both global and local features at different granu-
larities, allowing for improved robustness in varying vi-
sual conditions. However, CNN-based methods often rely on
predefined body part regions or supervised domain-specific
knowledge, which can limit their generalization in real-
world scenarios. To address these issues, Smoothing Ad-
versarial Domain Attack (SADA) and p-Memory Reconsol-
idation (pMR) (Wang et al. 2020) propose techniques for
cross-domain knowledge transfer by aligning feature dis-
tributions between labeled source and unlabeled target do-
mains. Additionally, methods like Identity-guided Seman-
tic Parsing (ISP) (Zhu et al. 2020) employ identity-guided

learning for pixel-level alignment, enabling the model to ef-
fectively localize both human body parts and personal be-
longings, which are critical for ReID tasks.

Transformer-based Person Re-identification
Transformer-based models have gained significant attention
in person ReID due to their ability to capture global con-
text and long-range dependencies, overcoming limitations of
CNNs, which focus on local receptive fields. These models
process images as sequences of patches, enabling them to
learn robust and holistic feature representations.

A key approach, TransReID (He et al. 2021), introduces
a pure Transformer-based ReID framework. It encodes im-
ages into patch sequences and improves feature discrimi-
nation through two innovations: the Jigsaw Patch Module
(JPM), which enhances feature diversity, and the Side In-
formation Embeddings (SIE), which helps mitigate camer-
a/view biases. This model achieves state-of-the-art results
on several ReID benchmarks, demonstrating the power of
Transformers in feature learning.

For fine-grained recognition, the Dual Cross-Attention
Learning (DCAL) method (Zhu et al. 2022a) extends
self-attention by introducing Global-Local Cross-Attention
(GLCA) and Pair-Wise Cross-Attention (PWCA). GLCA
enhances the interaction between global and local features,
while PWCA regularizes attention learning to focus on rel-
evant parts. This reduces misleading attention and improves
the model’s ability to differentiate subtle features in ReID
tasks.

Transformer models also address occlusion challenges in
ReID. The Dynamic Prototype Mask (DPM) (Tan et al.
2022b) introduces a Hierarchical Mask Generator to align
occluded features and a Head Enrich Module to enhance fea-
ture aggregation, allowing for better handling of occluded or
partial information.

In conclusion, Transformer-based methods provide sig-
nificant advantages for person re-identification, including
improved feature extraction, fine-grained recognition, and
occlusion handling, achieving superior performance com-
pared to traditional CNN-based methods.

Application of Frequency Information in Vision
Recent advancements in deep learning have explored
the utility of frequency information, particularly through
Fourier and wavelet transforms, to improve the performance
of vision models. One prominent direction involves lever-
aging the spectral components of images to enhance model
generalization and reduce the impact of domain shifts. For
instance, some approaches have focused on using Fourier
phase information, which is less susceptible to changes in
domain distributions. A notable example is the Fourier-
based domain generalization method, which incorporates a
data augmentation strategy, known as amplitude mix, to im-
prove generalization across different domains. By interpo-
lating between the amplitude spectrums of source and target
images, the method encourages the model to focus on in-
variant phase information, leading to state-of-the-art results
in domain generalization tasks without requiring complex
adversarial training techniques (Xu et al. 2021).



Wavelet transforms have also gained attention for their
ability to capture both low-frequency and high-frequency
components of images. The Deep Wavelet Super-Resolution
(DWSR) method (Guo et al. 2017) exploits this by predict-
ing missing high-frequency details in wavelet space, which
significantly enhances the image resolution while maintain-
ing computational efficiency. This approach not only simpli-
fies the training process by reducing the need to learn low-
frequency components but also demonstrates competitive
performance compared to traditional super-resolution tech-
niques. Similarly, the Wavelet Vision Transformer (Wave-
ViT) introduces a novel method of down-sampling using
wavelet transforms, which is both efficient and invertible.
This enables a better trade-off between accuracy and com-
putational cost, particularly by preserving high-frequency
details, such as texture information, that are typically lost
in traditional down-sampling methods used in Vision Trans-
formers (Yao et al. 2022).

In addition, frequency information has been applied to
unsupervised domain adaptation, where a simple Fourier
Transform is used to align the low-frequency spectra of
source and target domains, mitigating the domain shift with-
out complex training procedures. This method has shown
promising results in semantic segmentation tasks, particu-
larly in scenarios where high-quality annotations are scarce
in the target domain (Yang and Soatto 2020). Furthermore,
the concept of feature space deep residual learning has been
explored to enhance image restoration tasks, particularly in
situations where CNNs struggle with images containing in-
tricate patterns and structures. By applying an analytic map-
ping to a feature space, the method improves the learning
process by focusing on spectral characteristics, demonstrat-
ing superior performance in tasks such as denoising and
single-image super-resolution (Bae, Yoo, and Ye 2017).

These studies collectively highlight the importance of
frequency-based techniques in improving both the robust-
ness and efficiency of vision models, paving the way for
more effective and scalable solutions in various vision tasks.

Proposed Solution
We first analyze the changes in the relationship between
high- and low-frequency information during network evo-
lution in Section Frequency Similarity. Then, in Section
Frequency Domain Augment, we introduce the Frequency
Domain Augment approach. Finally, in Section Low-High
Frequency Similarity Loss, we use the LHFS loss to con-
strain the relationship between high- and low-frequency in-
formation during the model evolution process.

Frequency Similarity
Based on the preliminary experiments presented in the In-
troduction section, it is evident that both low-frequency and
high-frequency information are equally important for the
pedestrian re-identification task. To explore the role of these
components in model evolution, we apply the Discrete Haar
Wavelet Transform (DHWT) to process the input images
or feature vectors, extracting both low-frequency and high-
frequency information. For the input RGB image, img , we
have:

low, high = ||DHWT (img)||2 (1)
where low and high represent the low-frequency and

high-frequency components, respectively.
After obtaining the high-frequency and low-frequency

components, we calculate the cosine similarity between the
high-frequency and low-frequency information.

cosine similarity =
low · high

||low||2||high||2
(2)

After obtaining the similarity between the two types of
information, we compare the changes in the cosine similar-
ity of high-frequency and low-frequency information before
and after processing the input images by ResNet and Trans-
former network architectures on the MSMT17 dataset.
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Figure 2: The curve illustrates the changes in high and low
frequency information as they evolve through TransReID
and ResNet101. The vertical axis represents the similarity
between high and low frequency information after applying
DHWT to the input images or feature vectors. The horizon-
tal axis represents the iteration index. The red curve rep-
resents ResNet101, while the blue curve represents Tran-
sReID.

As shown in Figure 2, we can observe that after the in-
put image is processed by the transformer, the similarity be-
tween high-frequency and low-frequency information sig-
nificantly increases. At the same time, we observe a sim-
ilar trend in ResNet101. However, it is noteworthy that
ResNet101 does not achieve a very high similarity be-
tween high and low-frequency information upon conver-
gence. Therefore, we hypothesize that this phenomenon oc-
curs because convolution has a better ability to distinguish
between high and low-frequency information compared to
the self-attention mechanism.

Frequency Domain Augment
We hope that the pedestrian re-identification model can ef-
fectively distinguish both high-frequency and low-frequency
information in pedestrian images, thereby fully leveraging
these two types of information to extract fine-grained details
from the images.
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Figure 3: Overall Diagram of FDA. The diagram includes the plug-and-play FDA Module (FDAM) and the LHFS loss function.
LID and LT represent ID loss and Triplet loss, respectively. The part highlighted in red corresponds to the global embedding
output by TransReID. The dashed box indicates the FDAM, which, along with the LHFS loss function, is only used during
model training. FDA is a plug-and-play method designed to regulate the similarity of high and low-frequency information
during the model’s evolution, without introducing additional computational overhead during model inference.

To enable the model to effectively differentiate between
high- and low-frequency information, we design a Fre-
quency Domain Augmentation (FDA) approach. Figure 3
shows the overall framework during training. This aug-
mentation method uses a plug-and-play module that allows
the model to learn the ability to distinguish between high-
and low-frequency information extracted via DHWT during
training, rather than confusing the two types of information.

Low-High Frequency Similarity Loss

To prevent high-frequency and low-frequency information
from being confused by the model during network evolution,
we propose an innovative Low-High Frequency Similarity
Loss (LHFS loss). This loss function is a similarity-based
loss that helps ensure the model properly distinguishes be-
tween high-frequency and low-frequency components.

LLHFS =

∑n
i=1 lowi · highi√∑n

i=1 low
2
i ·

√∑n
i=1 high

2
i + α

− 1 (3)

where low
i and high

i represent the low-frequency and high-
frequency components of the i-th image, respectively. The
parameter α is a hyperparameter that controls the scale of the
loss function. As can be seen, when the LHFS loss is low, the
similarity between the high-frequency and low-frequency
information in the output feature vectors is also low, which
aligns with our training goal.

Experiments
Datasets and Evaluation Metrics
We conduct extensive experiments on three standard per-
son ReID benchmarks: Market-1501 (Zheng et al. 2015),
MSMT17 (Wei et al. 2018), CUHK03-NP (Li et al. 2014).
Tabel 1 shows details of above datasets. Following conven-
tions in the ReID community (He et al. 2021, 2020; Yan
et al. 2020), we adopt Cumulative Matching Characteristic
(CMC) curves and the mean Average Precision (mAP) to
evaluate the quality of different methods.

Dataset IDs Images Cameras

Market-1501 1,501 32,668 6
MSMT17 4,101 126,441 15

CUHK03-NP 1,467 13,164 2

Table 1: Details of the datasets used in our experiments.

Implementation Details
Following TransReID (He et al. 2021), all input images are
resized to 256 × 128, and the training images are augmented
with random horizontal flipping, padding, random cropping,
and random erasing. The batch size is set to 64 with 4 images
per ID, and the SGD optimizer is employed with a momen-
tum of 0.9 and a weight decay of 0.0001. The learning rate
is initialized as 0.008 with cosine learning rate decay. The
parameter α in Eq. (3) is set to 0.01. All experiments are
performed with one Nvidia A100 GPU with FP16 training.



Method Market1501 MSMT17 CUHK03-NP labeled

R1(%) mAP(%) R1(%) mAP(%) R1(%) mAP(%)

CNN-based methods
CBDB-Net (TCSVT 21) (Tan et al. 2022a) 94.4 85.0 - - 77.8 76.6
CDNet (CVPR 21) (Li, Wu, and Zheng 2021) 95.1 86.0 78.9 54.7 - -
C2F (CVPR 21) (Zhang et al. 2021) 94.8 87.7 - - 80.6 79.3

ViT-based methods
TransReID (ICCV 21) (He et al. 2021) 95.2 89.9 85.3 67.4 81.7 79.6
PFD (AAAI 22) (Wang et al. 2021) 95.5 89.7 83.8 67.4 - -
ABDNNet+NFormer (CVPR 22) (Wang et al. 2022) 95.7 93.0 80.8 62.2 80.6 79.1
DCAL (CVPR 22) (Zhu et al. 2022a) 94.7 87.5 83.1 64.0 - -

FDA (ours) 95.9 90.2 85.6 68.0 82.1 79.9

Table 2: Comparison of Different Methods on Three Datasets.

Comparison with State-of-the-Art
We compare our proposed method with several state-of-the-
art ReID methods, the results of which are shown in Table 2.
Our method achieves competitive performance on both the
Market-1501, MSMT17 and CUHK03-NP labeled datasets,
demonstrating the effectiveness of our approach. Particu-
larly, with the TransReID baseline, our method achieves
95.9%/90.2%, 85.6%/68.0%, 82.1%/79.9% Rank-1/mAP on
Market1501, MSMT17, CUHK03-NP labeled datasets, re-
spectively.

Comparison to ViT-based Methods. Some typical works
(e.g., TransReID (He et al. 2021), PFD (Wang et al. 2021)
and DCAL (Zhu et al. 2022a)), extract discriminative part
features for accurate alignment. Rather than aligning fine-
grained parts, our FDA method benefits the ViT to preserve
pivotal high-frequency components of images, to extract dis-
criminative person representations. Compared to NFormer
(Wang et al. 2022) which aggregates hierarchical features
from CNN with Transformer blocks, our FDA method does
not modify the model architecture. It is only necessary dur-
ing training and can be discarded during inference, without
bringing extra computation costs.

Comparison to CNN-based Methods. Compared with
the competing method C2F (Zhang et al. 2021), our FDA
outperforms it by 1.1%/2.5% and 1.5%/0.6% Rank-1/mAP
on Market1501 and CUHK03-NP labeled datasets when tak-
ing the TransReID as the baseline. By virtue of our FDA, the
ViT could not only build long-distance dependencies of low-
frequency components but also capture key high-frequency
components of person images. This benefits the ViT to ex-
tract discriminative person representations.

Ablation Study
To evaluate the effectiveness of our proposed FDA method,
we conduct an ablation study on the MSMT17 dataset. As
shown in Table 3, we compare the performance of the ViT
baseline with different combinations of FDA and LHFS
loss. The results demonstrate that both FDA and LHFS

Index FDA LLHFS R1 (%) mAP (%)

1 80.4 59.3
2 ✓ 82.3 67.4
3 ✓ ✓ 85.6 68.0

Table 3: Ablation study over MSMT17 dataset.

loss contribute to the improvement in Rank-1 accuracy and
mAP. Specifically, the combination of FDA and LHFS loss
achieves the best performance, indicating that our proposed
method effectively enhances the ViT’s ability to extract dis-
criminative person representations.

Effectiveness of FDA. By comparing the results of Index
1 and Index 2, we observe that the FDA method improves the
ViT’s performance by 1.9% in Rank-1 accuracy and 8.1% in
mAP. This demonstrates that FDA effectively enhances the
ViT’s ability to extract discriminative person representations
by preserving high-frequency components of person images.

Effectiveness of LHFS Loss. By comparing the results of
Index 2 and Index 3, we observe that the LHFS loss im-
proves the ViT’s performance by 3.3% in Rank-1 accuracy
and 0.6% in mAP. This indicates that the LHFS loss ef-
fectively constrains the relationship between high- and low-
frequency components, enabling the ViT to extract more dis-
criminative person representations.

Conclusion
In this paper, we propose a novel approach to enhance per-
son re-identification by considering the evolution of mod-
els from the perspective of frequency dimensions. We intro-
duce a Frequency Domain Augmentation (FDA) method that
leverages the Discrete Haar Wavelet Transform (DHWT) to
decompose images into high-frequency and low-frequency
components. We observe the changes in the relationship
between high- and low-frequency information during net-
work evolution and propose a Low-High Frequency Similar-
ity Loss (LHFS loss) to constrain this relationship. Experi-



mental results on the MSMT17, Market-1501 and CUHK03-
NP labeled datasets demonstrate the effectiveness of our
approach, achieving competitive performance compared to
state-of-the-art methods. Our work provides valuable in-
sights into the role of frequency information in person re-
identification and opens up new directions for future re-
search in this area.
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